翻訳と辞書 |
Carathéodory–Jacobi–Lie theorem : ウィキペディア英語版 | Carathéodory–Jacobi–Lie theorem The Carathéodory–Jacobi–Lie theorem is a theorem in symplectic geometry which generalizes Darboux's theorem. ==Statement== Let ''M'' be a 2''n''-dimensional symplectic manifold with symplectic form ω. For ''p'' ∈ ''M'' and ''r'' ≤ ''n'', let ''f''1, ''f''2, ..., ''f''r be smooth functions defined on an open neighborhood ''V'' of ''p'' whose differentials are linearly independent at each point, or equivalently : where = 0. (In other words they are pairwise in involution.) Here is the Poisson bracket. Then there are functions ''f''r+1, ..., ''f''n, ''g''1, ''g''2, ..., ''g''n defined on an open neighborhood ''U'' ⊂ ''V'' of ''p'' such that (fi, gi) is a symplectic chart of ''M'', i.e., ω is expressed on ''U'' as :
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Carathéodory–Jacobi–Lie theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|