翻訳と辞書
Words near each other
・ Carathis alayorum
・ Carathis australis
・ Carathis byblis
・ Carathis gortynoides
・ Carathis palpalis
・ Carathis septentrionalis
・ Carathéodory conjecture
・ Carathéodory kernel theorem
・ Carathéodory metric
・ Carathéodory's criterion
・ Carathéodory's existence theorem
・ Carathéodory's extension theorem
・ Carathéodory's theorem
・ Carathéodory's theorem (conformal mapping)
・ Carathéodory's theorem (convex hull)
Carathéodory–Jacobi–Lie theorem
・ Caratinga
・ CaratLane
・ Caratoola Recreation Park
・ Caratti
・ Caratunk Falls Archeological District
・ Caratunk, Maine
・ Carau
・ Carauari
・ Carauari Airport
・ Caraula
・ Caraula River
・ Caraulun River
・ Caraun Reid
・ Carausian Revolt


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Carathéodory–Jacobi–Lie theorem : ウィキペディア英語版
Carathéodory–Jacobi–Lie theorem
The CarathéodoryJacobiLie theorem is a theorem in symplectic geometry which generalizes Darboux's theorem.
==Statement==
Let ''M'' be a 2''n''-dimensional symplectic manifold with symplectic form ω. For ''p'' ∈ ''M'' and ''r'' ≤ ''n'', let ''f''1, ''f''2, ..., ''f''r be smooth functions defined on an open neighborhood ''V'' of ''p'' whose differentials are linearly independent at each point, or equivalently
:df_1(p) \wedge \ldots \wedge df_r(p) \neq 0,
where = 0. (In other words they are pairwise in involution.) Here is the Poisson bracket. Then there are functions ''f''r+1, ..., ''f''n, ''g''1, ''g''2, ..., ''g''n defined on an open neighborhood ''U'' ⊂ ''V'' of ''p'' such that (fi, gi) is a symplectic chart of ''M'', i.e., ω is expressed on ''U'' as
:\omega = \sum_^n df_i \wedge dg_i.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Carathéodory–Jacobi–Lie theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.